Технологии » 2012 » Январь » 10 » Свариваемость сталей.Эквивалент углерода.
00:36
Свариваемость сталей.Эквивалент углерода.

Основными характеристиками свариваемости сталей является их склонность к образованию трещин и механические свойства сварного шва.
По свариваемости стали подразделяют на четыре группы:

1 – хорошая свариваемость;
2 – удовлетворительная свариваемость;
3 – ограниченная свариваемость;
4 – плохая свариваемость.
К группе 1 относят стали, сварка которых может быть выполнена без подогрева до сварки и в процессе сварки и без последующей термообработки.
Но применение термообработки не исключается для снятия внутренних напряжений.
К группе 2 относят преимущественно стали, при сварке которых в нормальных производственных условиях трещины не образуются, а также стали, которые для предотвращения трещин нуждаются в предварительном нагреве, стали, которые необходимо подвергать предварительной и последующей термообработке.
К группе 3 относят стали, склонные к образованию трещин в обычных условиях сварки.
Их предварительно подвергают термообработке и подогревают.
Большинство сталей этой группы термически обрабатывают и после сварки.
К группе 4 относят стали, наиболее трудно сваривающиеся и склонные к образованию трещин.
Сваривают обязательно с предварительной термообработкой, подогревом в процессе сварки и последующей термообработкой.

 

Низкоуглеродистые стали отличаются хорошей свариваемостью.

Снижать свариваемость могут вредные примеси, если содержание их превышает норму.
Вредные примеси могут ухудшать свариваемость даже и при среднем содержании, не выходящем за норму, если они образуют местные скопления, например вследствие ликвации.
Вредными для сварки элементами в низкоуглеродистой стали могут являться углерод, фосфор и сера, причем последняя, особенно склонна к ликвации с образованием местных скоплений.

Отрицательное влияние на свариваемость может оказывать также засоренность металла газами и неметаллическими включениями.
Засоренность металла вредными примесями зависит от способа его производства, и о ней частично можно судить по маркировке металла: сталь повышенного качества сваривается лучше, чем сталь обычного качества соответствующей марки; сталь мартеновская лучше, чем сталь бессемеровская, а сталь мартеновская спокойная – лучше, чем кипящая.

При изготовлении ответственных сварных изделий указанные отличия в свариваемости низкоуглеродистых сталей должны обязательно приниматься во внимание и учитываться при выборе марки основного металла.

Углеродистые стали, содержащие более 0,25% углерода, обладают пониженной свариваемостью по сравнению с низкоуглеродистыми, причем свариваемость постепенно снижается по мере повышения содержания углерода.


Стали с повышенным содержанием углерода легко закаливаются, что ведет к получению твердых хрупких закалочных структур в зоне сварки и может сопровождаться образованием трещин.
С повышением содержания углерода растет склонность металла к перегреву в зоне сварки.
Увеличенное содержание углерода усиливает процесс его выгорания с образованием газообразной окиси углерода, вызывающей вскипание ванны и могущей приводить к значительной пористости наплавленного металла.

При содержании свыше 0,4–0,5% углерода сварка стали становится одной из сложных задач сварочной техники.
Углеродистые стали вообще обладают пониженной свариваемостью и, если это возможно, рекомендуется заменять их низколегированными конструкционными сталями, которые дают ту же прочность при значительно меньшем содержании углерода за счет других легирующих элементов.

При сварке углеродистых сталей плавлением обычно не придерживаются соответствия химического состава присадочного и основного металлов, стремясь получить наплавленный металл равнопрочным с основным за счет легирования марганцем, кремнием и др. при пониженном содержании углерода.

Сварка углеродистых сталей часто выполняется с предварительным подогревом и последующей термообработкой, причем, если возможно, во многих случаях стремятся совместить термообработку с процессом сварки, например, с газовой сваркой мелких деталей, с газопрессовой, точечной, со стыковой контактной сваркой и т. д.

Большинство низколегированных конструкционных сталей обладает удовлетворительной свариваемостью.

Ввиду возросшего значения сварки конструкционная низколегированная сталь новых марок, как правило, отличается удовлетворительной свариваемостью.
Если же испытания пробных партий стали показывают недостаточно удовлетворительную свариваемость, то обычно для улучшения свариваемости изготовители корректируют состав стали.
В некоторых случаях требуется небольшой предварительный подогрев стали до 100–200° С, реже приходится прибегать к последующей термообработке.

Для предварительной грубой качественной оценки свариваемости низколегированных сталей иногда прибегают к подсчету эквивалента углерода по химическому составу стали по следующей эмпирической формуле:
Cэ = С+ Mn /20 + Ni /15 + (Cr + Mo + V) /10 , где символы элементов означают процентное содержание их в стали.

При эквиваленте углерода меньше 0.45 свариваемость стали может считаться удовлетворительной, если же эквивалент углерода больше 0.45, то необходимо принимать специальные меры, например, проводить предварительный подогрев и последующую термообработку.
Метод оценки свариваемости по эквиваленту углерода является ориентировочным и далеко не всегда дает верные результаты.

По структуре низколегированные стали относятся обычно к перлитному классу, большое разнообразие химического состава низколегированных сталей весьма затрудняет получение одинакового состава наплавленного и основного металлов при сварке плавлением, что требует большого разнообразия присадочных материалов.
Поэтому, за исключением некоторых особых случаев, когда требуется соответствие химического состава основного и наплавленного металлов (например, получение устойчивости против коррозии, крипоустойчивости и т. п.), обычно ограничиваются получением необходимых механических свойств наплавленного металла, не принимая во внимание его химический состав.
Это позволяет при сварке многих сортов сталей пользоваться немногими видами присадочных материалов, что является существенным практическим преимуществом.
Например, электродами УОНИ-13 успешно свариваются десятки марок углеродистых и низколегированных сталей.

В сварных конструкциях низколегированные стали обычно предпочитают углеродистым той же прочности.
Для установления необходимости небольшого предварительного подогрева и последующего отпуска часто принимают во внимание максимальную твердость металла зоны термического влияния.
Если твердость не превышает НВ200–250, то подогрев и отпуск не требуются, при твердости НВ 250–300 подогрев или отпуск желательны, при твердости выше НВ 300–350 – обязательны.

Из высоколегированных сталей обладают хорошей свариваемостью и находят широкое применение в сварных конструкциях стали аустенитного класса.
 

Наиболее широко применяются хромоникелевые аустенитные стали, например общеизвестная нержавеющая сталь 18–8 (18% Сг и 8% Ni).
Хромоникелевые аустенитные стали применяются как нержавеющие, а при более высоком легировании, например при содержании 25% Сг и 20% Ni, они являются и жароупорными сталями.
Содержание углерода в хромоникелевых аустенитных сталях должно быть минимальным, не превышающим 0,10–0,15%, иначе возможно выпадение карбидов хрома, резко снижающее ценные свойства аустенитной стали.

Для частей машин, работающих на истирание, например для щек камнедробилок, а также для рельсовых крестовин, применяется обычно в форме отливок сравнительно дешевая марганцовистая аустенитная сталь, содержащая 13–14% Мn и 1–1,3% С.

Сварка аустенитных сталей должна, как правило, сохранить структуру аустенита в сварном соединении и связанные с аустенитом ценные свойства: высокое сопротивление коррозии, высокую пластичность и т. д.
Распад аустенита сопровождается выпадением карбидов, образуемых освобождающимся из раствора избыточным углеродом.
Распаду аустенита способствуют нагрев металла до температур ниже точки аустенитного превращения, уменьшение содержания аустенитообразующих элементов, повышение содержания углерода в низкоуглсродистых аустенитных сталях, загрязнение металла примесями и т. д.
Поэтому при сварке аустенитных сталей следует сокращать до минимума продолжительность нагрева и количество вводимого тепла и применять возможно более интенсивный отвод тепла от места сварки – посредством медных подкладок, водяного охлаждения и т. д.

Аустенитная сталь, предназначенная для изготовления сварных изделий, должна быть высшего качества, с минимальным количеством загрязнений.
Поскольку распад хромоникелевого аустенита вызывается образованием и выпадением карбидов хрома, стойкость аустенита может быть повышена введением в металл карбидообразователей более сильных, чем хром.
Для этой цели оказались пригодными титан и ниобий, в особенности первый элемент, к тому же не являющийся дефицитным.
Титан весьма прочно связывает освобождающийся углерод, не позволяя образовываться карбидам хрома, и тем самым предотвращает распад аустенита.

Для сварки рекомендуется применять аустенитную сталь с небольшим содержанием титана.
Хорошей свариваемостью отличается, например, нержавеющая аустенитная хромоникелевая сталь X18Н9T типа 18–8 с небольшим количеством титана (не свыше 0,8%).

Более строгие требования, естественно, предъявляются к присадочному металлу, который должен быть аустенитным, желательно с некоторым избытком легирующих элементов, с учетом возможного их выгорания при сварке и со стабилизирующими добавками – титаном или ниобием.
ГОСТ 2240-60 предусматривает аустенитную присадочную проволоку для сварки нержавеющих и жароупорных сталей.
Аустенитная присадочная проволока иногда применяется и для сварки сталей мартенситного класса.
Дефицитность и высокая стоимость аустенитной хромоникелевой проволоки заставляют разрабатывать более дешевые заменители.

Стали мартенситного класса, отличающиеся высокой прочностью и твердостью, находят применение как инструментальные стали, как броневые и т. д.

Сварка их связана с известными трудностями.
Стали легко и глубоко закаливаются, поэтому после сварки обычно необходима последующая термообработка, заключающаяся в низком или высоком отпуске.
Часто необходим также предварительный подогрев изделия.
Существенное значение может иметь предшествующая термообработка изделия перед сваркой; желательно по возможности равномерное мелкодисперсное распределение структурных составляющих.

При сварке плавлением часто отказываются от сходства наплавленного и основного металла не только по химическому составу, но и по механическим свойствам, стремясь в первую очередь обеспечить повышенную пластичность наплавленного металла и устранить образование в нем трещин.
Для этой цели при дуговой сварке довольно часто применяют, например, электроды из аустенитной стали.

Стали карбидного класса применяют главным образом как инструментальные, и на практике чаще приходится иметь дело не со сваркой, а с наплавкой этих сталей при изготовлении и восстановлении металлорежущего инструмента, штампов и т. п.
Предварительный подогрев и последующая термообработка для этих сталей по большей части обязательны.

Для дуговой сварки и наплавки применяются электродные стержни легированных сталей, близких по свойствам к основному металлу, а также стержни низкоуглеродистой стали с легирующими покрытиями, содержащими соответствующие ферросплавы.
По окончании сварки или наплавки обычно производится термообработка, состоящая из закалки и отжига.

Стали ферритного класса отличаются тем, что в них совершенно подавлено или ослаблено образование аустенита при высоких температурах за счет введения больших количеств стабилизаторов феррита.
Существенное практическое значение имеют хромистые ферритные стали с содержанием 16–30% Сг и не свыше 0,1–0,2% С, отличающиеся кислотоупорностью и исключительной жаростойкостью.
Стали могут быть сварены с присадочным металлом того же состава или аустенитным.
Обязателен предварительный подогрев; по окончании сварки производится продолжительный отжиг в течение нескольких часов, за которым следует быстрое охлаждение.

Читать текст полностью... Свариваемость стали.html

   
Литература:
1.ГОСТ 29273-92 Свариваемость.Определение.
2.ГОСТ 30242-97 Дефекты соединений при сварке металлов плавлением.Классификация, обозначение и определения.
3.Словарь-справочник по сварке / Под ред. К.К. Хренова. Киев, Наукова думка, 1974. 195с.
4.Советский энциклопедический словарь / Гл. ред. А.М. Прохоров; редкол.: А.А. Гусев и др. – Изд. 4-е. – М.: Сов. энциклопедия, 1987. – 1600с.
5.Сварочные работы. – М.: Вече, 2002. – 176с.
   
Категория: Сварка | Просмотров: 12112 | Добавил: semglass | Теги: марки стали, свариваемость, свойства, Углерод
Всего комментариев: 0
Имя *:
Email *:
Код *: