SOLIDCast

Моделирование технологии в SOLIDCast. Мастер создания прибылей SOLIDCast. Мастер создания литниковых систем SOLIDCast.

Введение

SOLIDCast – это программный продукт, который позволяет не только провести моделирование технологического процесса (заливки формы сплавом, кристаллизации отливки и образования усадочных дефектов), но и помогает инженеру-технологу создать новую технологию.

Введение

Рассмотрим создание технологии в SOLIDCast для отливки "Патрубок". Материал отливки: Ст 40.

Предварительный расчет

 На первом этапе необходимо провести расчет кристаллизации нашей отливки без прибылей и литниковой системы.

 Анализ кристаллизации отливки позволит определить места установки прибылей и их размеры, оптимальное время заливки, формы и размеры элементов литниковой системы.

 После первичного расчета мы добавим рассчитанные прибыли и литниковую систему к отливке и проведем проверочный расчет.

Импорт геометрии отливки

Импорт геометрии отливки

В появившимся окне:

1. Из предложенных вариантов выберете "STL file".

2. Нажмите кнопку "File" и определите путь необходимого файла STL.

3. Имя выбранного файла будет отображаться в данном поле.

4. Определите нужный приоритет загружаемого элемента (от 1 до 10).

5. В списке материалов выберете "Casting Material" (Материал отливки).

6. Если все верно, нажмите кнопку "Add Shape" (добавить элемент).

Приоритет элемента

В SOLIDCast можно загрузить одновременно несколько геометрических элементов для расчета (например, отливку, холодильники, экзотермические или теплоизоляционные вставки и др.). Поэтому для каждого такого элемента нужно установить *приоритет* важности. Построение сетки при этом будет проходить сначала в элементах с наибольшим приоритетом (1, 2), а в последнюю очередь – в элементах с наименьшим приоритетом (9,10).

Выбор материала элемента

Для загружаемого элемента можно выбрать следующие материалы:

• Casting material – материал отливки (определяется из назначенного списка в Material List).

• Riser material – материал прибыли (имеет тот же материал, что и Casting material, но выделяется другим цветом).

Void material – пустой материал.

• Fill material – точка заливки. Используется для определения впускного отверстия в форме.

 Любой другой материал, добавленный пользователем в список материалов (например, песчаная смесь, материал холодильника и экзотермическая смесь и др.)

Позиционирование отливки

SOLIDCast(tm) - [Model 1 *]

ble Edit Show Model Tools Window Help

New Project

_ 8 ×

Теперь загруженную отливку необходимо расположить в том положении, в котором она будет заливаться в форме.

🛛 🗶 🛉 🐨 🗶 💺 🖉 🗶 🖉 🔍 🔍 🖉

X:258.003 Z:419.964 mm

Позиционирование отливки

SOLIDCast(tm) - [Model 1 *]

e Edit Show Model Tools Window Help

_8×

New Project

Чтобы повернуть модель в нужное положение:

🕘 🚽 💠 🕲 🛃 🛔 🎟 🖲 🐐 📌 🔍 🔍 -

1. Нажмите правую кнопку мыши на пустом поле и выберите в меню "Select all Shapes" (Выделить все элементы).

Также можно выбрать инструмент "Select Shape Mode" (черная стрелка на панели инструментов) и выделить отливку. При этом выбранный элемент изменит цвет на красный. 2. Затем нажмите правую кнопку мыши на пустом поле и выберете в меню "Rotate selected Shape(s)" (повернуть выбранные элементы). 3. В появившимся окне "Move/Rotate" необходимо ввести угол поворота модели вокруг соответствующей оси. 4. Нажмите кнопку ОК. love/Rotate C Move Rotate
 Rotate
 Move, then Rotate Rotate, then Move Rotate Center Rotate Angle × -90 X 0.000 Y 0.000 Y 0.000 z 0.000 Z 0.000 OK. Cancel

X:-286.676 Z:756.467 mm

Меню "System Parameters"

В меню выберите пункт "Tools", "System Parameters". В появившимся окне откройте вкладку "Alloy Curves". Для каждого расчета здесь необходимо ввести параметры используемого сплава: точку критической доли твердой фазы, точку Нийама, и величину усадки сплава.

😑 System Paramel	ters	×
Directories	FLOWCast	
Alloy Curves	Model Colors	Model & Sim
Default Critical Fract	ion Solid % 60	
Default Niyama Point	t % 65	
Default Solidification	Shrinkage % -7	
	ок	Revert Cancel

Меню "System Parameters"

Рекомендуемые значение для критической доли твердой фракции и точки Нийамы

Материал	CFS, %	Niyama, %
Стали	60	65
Литейные чугуны	50	90
Алюминиевые сплавы	35	50
Медные сплавы	50	90

Для установки начальных условий процесса в меню "Model" выберите раздел "Material list".

Mold	Ĩ.	Curves	HT Coefficient
From DB		To DB	
Attributes			
Alloy Name	ST 1040		
Thermal Conductivity	50.7	(VV/m-K)	
Specific Heat	485.344	(J/kg-K)	
Density	7839.401	(kg/m^3)	
Initial Temperature	1580	(C)	
Solidification Temperature	1432.222	(C)	
Freezing Range	63.889	(C)	
Latent Heat of Fusion	270866.969	(J/kg)	

Во вкладке "Casting" (отливка) необходимо выбрать нужный литейный сплав, температуру заливки и время заливки формы.

Во вкладке "Mold" необходимо установить все материалы формы, в том числе холодильники, экзотермическую смесь, утеплители и т. д.

Во вкладке "Curves" можно просмотреть температурные кривые выбранного литейного сплава.

Во вкладке "HT Coefficients" необходимо установить коэффициенты теплопередачи в форме.

	Materials List				
	Casting	Mold	Curves	HT Coefficients	
	Use Internal HT Coe	fficients	External HT Coefficient 8.5	(VV/m^2-K)	
Использовать внутренние коэффициенты теплопередачи.	1:Casting Materia 2:Riser Material 3:Ambient 4:Silica Sand			(/W/m^2-K)	Для литья в песчано-глинистые формы и по выплавляемым моделям можно ограничится только внешним коэффициентом теплопередачи.
				OK	

Рекомендуемые значения коэффициентов

теплопередачи

Для внешних коэффициентов теплопередачи

Вид литья	Коэффициент теплопередачи, Вт/м ² ·К
Литье в песчано-глинистую форму	8,5 - 9
Литье по выплавляемым моделям	40 - 70
Литье в кокиль	70 - 100

Для внутренних коэффициентов теплопередачи

Тип	Коэффициент теплопередачи, Вт/м ² ·К		
Форма – отливка	4500 – 5100		
Форма – литниковая система	1980 – 2280		
Внешняя поверхность формы	35 – 45		
Поверхность, охлаждаемая водой	1275		
Поверхность, охлаждаемая воздухом	140		
Стержни – форма	850		
Стержни - отливка	850		

После определения расчетных параметров, необходимо построить расчетную сетку в модели. Для этого в меню "Model" выберете позицию "Create Mash" (создать сетку).

Choose the drive and path for the	project	ОК	
🗩 d: [Files]	-		
📄 Stanina_fill	-	Cancel	
Training Trening_SolidCast1		New Dir	
ZIK_Pro		d:\Projects\Trainig_1	
Discrete Englishing The Territory and Territ			
ZIK_Solid_Fill	_		
Enter the name for the project			
Trainig_1			

Программа попросит сохранить проект. Необходимо ввести имя файла и нажать кнопку ОК.

В появившимся окне "Create Mesh" необходимо задать:

- 1. Общее количество ячеек в сетке или размер ячейки.
- 2. Тип формы (Rectangular прямоугольная, Shell оболочка, None без формы).
- 3. Нужный материал формы.
- 4. Толщину стенки формы.

В первом, предварительном, расчете нет необходимости создавать форму вокруг отливки. Поэтому устанавливаем количество ячеек в сетке: 5000.000; тип формы: None.

Mesh Name	Mesh 1
Max. Recom	mended Nodes: 76275035
	Number of Nodes C 4000000
Mold Type	
None	

При нажатии на кнопку ОК откроется окно, в котором автоматически будет построена сетка в отливке.

Запуск расчета

Теперь, чтобы запустить расчет, выделите построенную сетку в *дереве модели* (колонка в левой части окна), в меню "Mesh" нажмите "Start Simulation".

Запуск расчета

В окне расчета можно определить текущую информацию процесса: время моделирования, температуру в отливке, временной шаг, количество твердой фазы в отливке.

Моделирование кристаллизации отливки

После окончания расчета охлаждения и кристаллизации отливки можно приступать к непосредственному расчету <u>прибылей</u>.

На первом шаге установим чувствительность определения термических узлов в отливке. Нажмите клавишу Next, чтобы перейти к следующему этапу.

В результате Мастер создания прибылей определил четыре зоны, нуждающиеся в питании. Выделив нужную область (1), можно просмотреть ее (2) или рассчитать необходимую прибыль для неё (3). Нажмите Next для продолжения.

На следующих четырех слайдах показаны все области, нуждающиеся в питании.

Питаемая область № 1

Мастер создания прибылей Питаемая область № 2

Мастер создания прибылей Питаемая область № 3

Мастер создания прибылей Питаемая область № 4

Выбрав опцию *Design Riser,* мы перейдем в окно расчета прибыли для текущего узла.

OLIDCast Riser Design					
Riser Calculator Design for Riser 1					•
Casting Modulus	1.693 cm				
Casting Volume	12696.997 cc				
			CALCI	JLATOR	7
Riser : Casting Modulus Rat Required Riser Modulus	io 1.2 2.031 C	:m]	Calc. Diameter Based on Given Height and Req'd Modulus	Calc. Height Based on Given Diameter and Req'd Modulus	
 No Sleeve Insulating Sleeve Exothermic Sleeve 	Riser Modulus Increase Factor		Calc. Actual Modulus Based on Height and Diameter	Calc. Diameter and Height Based on H:D Ratio and Req'd Modulus	
Riser Diameter	0.000 m	nm	Actual Riser Volume:	0.000	cc
Riser Height	0.000 m	nm	Required Riser Volume:	0.000	сс
Actual Riser Modulus	0.000 c	m	Riser Efficiency Factor	15	%
Height : Diameter Ratio	0.000			♥ Use Wlodawer	
	Cancel < E	<u>3</u> ac	k Next>	Finish H	lelp

В первом блоке расположена общая информация: максимальный модуль отливки (1), объем отливки (2), отношение модуля прибыли к модулю отливки (3) и требуемый модуль прибыли (4).

		SOLIDCast Riser Design				
1		Riser Calculator Design for Riser 1				
2		Casting Modulus 1.693 cm				
	,	CALCULATOR				
3		 → Riser : Casting Modulus Ratio → Required Riser Modulus → Required Riser Modulus ↓ 2.031 ↓ Calc. Diameter Based on Given Height and Reg'd ↓ Calc. Height Based on Given Diameter Height and Reg'd 				
4		Modulus Modulus No Sleeve Riser Modulus Increase Factor Calc. Actual Modulus Based on Height Based on H:D Ratio and Req'd Modulus				
		Riser Diameter 0.000 mm Actual Riser Volume: 0.000 cc Riser Height 0.000 mm Required Riser Volume: 0.000 cc Actual Riser Modulus 0.000 cm Riser Efficiency Factor 15 % Height : Diameter Ratio 0.000 cm Riser Efficiency Factor 15 %				
		Cancel < Back Next> Finish Help				

Во втором блоке можно выбрать тип рассчитываемой прибыли: обычная (1), с теплоизолирующей вставкой (2), с экзотермической вставкой (3). В зависимости от выбранного типа устанавливается коэффициент увеличения модуля прибыли (Riser Modulus Increase Factor).

В третьем блоке необходимо задать начальные данные прибыли: диметр (1) и высота прибыли (2), либо фактический модуль прибыли (3) и отношение высоты к диаметру прибыли (4).

	SOLIDCast Riser Design
	Riser Calculator Design for Riser 1
	Casting Modulus 1.693 cm Casting Volume 12696 997 cc
	CALCULATOR
	Riser : Casting Modulus Ratio 1.2 Calc. Diameter Calc. Height Based on Given Required Riser Modulus 2.031 cm Calc. Diameter Calc. Height Based on Given Modulus 2.031 cm Modulus Calc. Height Based on Given
	Image: No Sleeve Riser Modulus Increase Factor Calc. Actual Modulus Based on Height and Diameter Calc. Diameter and Height Based on H:D Ratio and Req'd Modulus
2	A Riser Diameter 0.000 mm Actual Riser Volume: 0.000 cc A Riser Height 0.000 mm Required Riser Volume: 0.000 cc
3	→ Actual Riser Modulus 0.000 cm Riser Efficiency Factor 15 % → Height : Diameter Ratio 0.000 □ □ Use Use
1	Cancel < <u>B</u> ack <u>Next</u> Finish Help
В блоке "CALCULATOR" можно рассчитать объем прибыли по внесенным ранее данным:

1. Рассчитать объем прибыли по ее высоте и фактическому модулю.

2. Рассчитать объем прибыли по ее диаметру и фактическому модулю.

3. Рассчитать объем прибыли по ее высоте и диаметру.

4. Рассчитать диаметр прибыли по отношению высоты к диаметру и фактическому модулю.

Riser Diameter

Riser Height

Наконец, нажав одну из кнопок калькулятора, мы сможем просмотреть итоговую информацию: фактический объем прибыли (1), необходимый объем прибыли (2), коэффициент эффективности прибыли (3).

Riser Calculator Design for Rise	r1			•	
Casting Modulus Casting Volume	1.693 cm				
	1	CALCI	JLATOR	-	
Riser : Casting Modulus R Required Riser Modulus	atio 1.2 2.031 cm	Calc. Diameter Based on Given Height and Req'd Modulus	Calc. Height Based on Given Diameter and Req'd Modulus		
 No Sleeve Insulating Sleeve Exothermic Sleeve 	Riser Modulus Increase Factor	Calc. Actual Modulus Based on Height and Diameter	Calc. Diameter and Height Based on H:D Ratio and Req'd Modulus		
Riser Diameter	0.000 mm	Actual Riser Volume:	0.000	cck	
Riser Height	0.000 mm	Required Riser Volume:	0.000	CC.	
Actual Riser Modulus	0.000 cm	Riser Efficiency Factor	15	% K	
Height : Diameter Ratio	0.000		Viodawer		

Рассмотрим на примере расчета первой прибыли.

- 1. Выбираем обычную прибыль.
- 2. Так как модуль прибыли нам не известен, вносим ориентировочные размеры прибыли.
- 3. Нажимаем кнопку "Рассчитать по диаметру и высоте прибыли".

4. В итоге размеры прибыли удовлетворяют расчету. В ином случае появятся сообщение: *"Riser Volume to Small".*

	Casting Modulus 1.693 cm
	Casting Volume 12696.997 cc
	CALCULATOR
	Riser : Casting Modulus Ratio 1.2 Calc. Diameter Calc. Height Based
1	Required Riser Modulus 2.031 cm Height and Req'd Modulus on Given Diameter
	No Sleeve Riser Modulus
	C Insulating Sleeve Modulus Based on Height Based on Height Based on Height Based on
	O Exothermic Sleeve 1 Diameter Req'd Modulus
2	Riser Diameter 170 mm Actual Riser Volume: 5674,497 cc
2	Riser Height 250 mm Required Riser Volume: 5498.34 cc
	Actual Riser Modulus 3.172 cm Riser Efficiency Factor 15 %
	Height : Diameter Ratio 1.471 RISER VOLUME OK ← Use 4
	Cancel < <u>B</u> ack <u>N</u> ext > Finish Help

Таким же образом были рассчитаны остальные прибыли. Так как форма прибылей не цилиндрическая необходимо пересчитать их размеры, исходя из необходимого объема прибыли.

SOLIDCast(tm) Trainig_1 - [Model 1]

Trainig_1

Model 1

Mesh 1

File Edit Show Simulation Tools Window Help

Plot Iso Surface...

Plot Cut Plane...

CASTFIC Plot ... CASTSCAN Movie ...

Mirror Results ...

Gating Design Wizard.

Calculate FCC custom criterion RiserDesign Wizard... - 8 ×

Следующий этап – расчет литниковой системы для нашей отливки. Для этого в дереве модели выделите нужный расчет и в меню "Simulation" (моделирование) выберете "Gating Design Wizard" (мастер создания литниковых систем).

🧝 🐂 k 🥜 🔍 🔍 -

Gating Design Wizard

Gating Design Wizard

Choose the type of gating system you want to design.

Design Horizontal Gating

C Design Vertical Gating

В первом окне необходимо выбрать тип рассчитываемой литниковой системы: горизонтальная или вертикальная. Нажмите Next для продолжения.

X

Click Cancel to close the wizard without saving, or Close to save your place. (c) 2003 Finite Solutions Inc.

< Back <u>N</u>ext>

Finish

×

Gating Design Wizard

Horizontal Gating System -- Gate Position Use the buttons to calculate gate position dimensions, or enter the data directly. Укажите необходимую информацию: Sprue Type Round Tapered 1. Тип стояка (круглый Round Straight Square Tapered конический, круглый цилиндрический, квадратный 2 конический). Top Gating Bottom Gating 2. Тип подвода металла (подвод Parting Line Gating сверху, сифонный подвод, 530 mm 3 840 mm подвод в разъем формы). 530 mm 3. Габаритные размеры отливки и литниковой системы. Effective Sprue Height (ESH): mm 362,798 4. Соотношение поперечных Depth of metal in Basin: 152.4 mm площадей литниковой системы 4 GATING RATIO (стояк : литник : питатель). 1.2 1.4 Efficiency Factor (Pressurized Gating Only) 5. Коэффициент расхода • литниковой системы. Number of runners: 2 0.5 6. Количество литников и 5 stal Number of gates: 2 6 питателей в системе. Click Cancel to close the wizard without saving, or Close to save your place. (c) 2003 Finite Solutions Inc. Cancel < Back Next> Finish

1	Areas	Velocities	Dimensions		
Choke Area:	29.8 sq.c	n 1334.3 mm	n/sec 61.6	mm Dia.	
Area at Bottom of Sprue:	41.8 sq.c	n 953.1 mm	n/sec 72.9	mm Dia.	
Area at Top of Sprue:	77.9 sq.c	n 511.1 mm	n/sec 99.6	mm Dia.	
-Flow Distribution		сечении, д	иаметр сечения)		
		🤳 поперечнь	ых размеров, скор	рость потока в	
C Equalize Flow in Gates		2. Общая і	2. Общая площадь литников, количество		
Equalize Flow in Runners		литников и	и коэффициент по	отерь на	
		трение.			
		3. Установ	ить равный пото	к в питателях	
		или литни	ках.		

Отливка с рассчитанной литниковой

системой

Обратите внимание, что модель состоит из двух тел: непосредственно отливки с прибылями и литниковой системой и небольшого элемента в верхней части стояка. Этот элемент будет выполнять роль точки заливки в последующем гидродинамическом расчете.

Проверочный расчет

Сохраните данную сборку из двух тел в формат STL. Параметры STL:

1. Формат вывода – двоичный.

2. Сохранение всех компонентов сборки в разных файлах.

Меню "System Parameters"

В меню выберите пункт "Tools", "System Parameters". В появившимся окне откройте вкладку "Alloy Curves". Здесь необходимо установить те же параметры, что и для предыдущего расчета.

System Parameters				
Directories	FLOWCast			
Alloy Curves	Model Colors	Model & Sim		
Default Critical Fract	ion Solid % 60			
Default Niyama Point	% 65			
Default Solidification	Shrinkage % -7			
		1.1		

В меню "Model" выберите раздел "Material list". Установите тот же сплав Ст 40, температуру заливки – 1580°С, время заливки – 20 секунд.

Casting	Mold	Ĭ	Curves	HT Coefficients
	From DB		To DB	[
	Attributes		**	7
	Alloy Name	ST 1040		
	Thermal Conductivity	50.7	(VV/m-K)	
	Specific Heat	485.344	(J/kg-K)	
	Density	7839.401	(kg/m^3)	
	Initial Temperature	1580	(C)	
	Solidification Temperature	1432.222	(C)	
	Freezing Range	63.889	(C)	
	Latent Heat of Fusion	270866.969	(J/kg)	
	Fill Time	20	Seconds	01

Во вкладке "Mold" установите материал формы – Silica Sand (кварцевый песок) (1). Начальная температура формы (2) и температура окружающей среды (3) равна 25°С.

terials List				
Casting	Mold 1	Curves	HT Coefficients	3
Materials in Database		Materials in L	.ist	
Cast Iron	Remove fro	m DB ^^		
Chromite Snd	Add to list	>>		
Exo Sleeve	vv Remove from	n List <<		
Add to DB ~		^	Add to List	2
lame Silica Sand	Type Normal Mold	Initial Temp	25 (C)	
hrm Cond 0.59 (V	Wm-K) Spc Ht 1075.288	(J/kg-K) Dens	1521.71 (kg/m^3)	
			ОК	
			L	·

Температурные кривые сплава Ст 40.

Во вкладке "HT Coefficients" установите внешний коэффициент теплопередачи (в поле "Use Internal HT Coefficients" галочка *не стоит*). Значение коэффициента – 8,5 Вт/м²·К.

	Mold	Curves	HT Coeffi	cient
Use Internal HT Coefficier	ts	External HT Coefficient	8.5 (W/m^2	-K)
1:Casting Material 2:Riser Material 3:Ambient 4:Silica Sand			(\^\/m^2-K)	

Генерация расчетной сетки

В меню "Model" выберете позицию "Create Mash" (создать сетку) и задайте следующие характеристики:

- 1. Общее количество ячеек в сетке 8.000.000.
- 2. Тип формы Rectangular (прямоугольная).
- 3. Материал формы Silica Sand.
- 4. Толщина стенки формы 80 мм.

Генерация расчетной сетки

При нажатии на кнопку ОК откроется окно, в котором автоматически будет построена сетка в отливке и форме.

Запуск расчета

Теперь, чтобы запустить расчет, выделите построенную сетку в дереве модели (колонка в левой части окна), в меню "Mesh" нажмите "Start Simulation".

В появившимся окне:

 Выберете моделирование одного цикла (Single Cycle).
 В поле "Fill Algorithm" установите "SOLIDCast". Также можно провести гидродинамический расчет в модуле FLOWCast.
 В поле "Stop When" необходимо указать критерий окончания расчета. В нашем случае – это полная кристаллизация отливки.

Нажмите кнопку ОК, чтобы запустить расчет.

	Dialog Caption
	Simulation Name:
	Simulation
	Simulation Type
	C Democrat Mold
	C Permanent Mola
	Fill Algorithm
	SOLIDCast
3	Stop When: 100% Solid Casting & Riser OK Cancel

Запуск расчета

В окне расчета будет проведено поочередно моделирование заполнения формы сплавом и кристаллизация отливки.

Моделирование заполнения формы

Моделирование кристаллизации отливки

Просмотр результатов моделирования

SOLIDCast(tm) Trening_SolidCast1 - [Model 1] _ 8 × File Edit Show Simulation Tools Window Help _ 8 × Plot Iso Surface. Trening SolidCast1 🗶 🐁 🖡 🥜 🔍 🔍 -Plot Cut Plane... Model 1 Mesh 1 CASTPIC Plot CASTSCAN Movie ... Чтобы просмотреть результаты Mirror Results... Calculate FCC custom criterion моделирования, выделите в дереве RiserDesign Wizard... Gating Design Wizard.. модели нужный расчет, а затем нажмите "Simulation". Доступны четыре вида отображения результатов: 1. Plot Iso Surface – построение изоповерхности. 2. Plot Cut Plane – построение разреза. 3. CASTPIC Plot – отображение параметра по поверхности отливки. 4. CASTSCAN Movie – анимация изоповерхностей с вращением или линейным смещением отливки.

Isometric View

Просмотр результатов моделирования

Построим сечение отливки и формы с отображением температуры:

- 1. В дереве модели выделите необходимый расчет, в меню "Simulation" выберите "Plot Cut Plane". Появится следующее окно.
- 2. В поле "Select Data Type" выберите параметр "Temperature (Whole Model)" (1).
- 2. Установите плоскость сечения отливки (2).
- 3. В поле (3) можно установить минимальное и максимальное значение температуры.
- 4. Нажмите кнопку ОК.

Распределение температуры по сечению отливки и формы

Просмотр результатов моделирования

Отобразим температуру по поверхности отливки:

- 1. В дереве модели выделите необходимый расчет, в меню "Simulation" выберите "CASTPIC Plot ". Появится следующее окно.
- 2. В поле "Select Data Type" выберите параметр "Temperature (Casting & Riser Only)" (1).
- 3. В поле (2) можно установить минимальное и максимальное значение температуры.
- 4. В поле (3) можно ввести координаты секущей плоскости, для представления усеченной модели.
- 5. Нажмите кнопку ОК.

Распределение температуры по поверхности отливки.

Просмотр результатов моделирования

Создадим анимацию затвердевания сплава в форме:

- В дереве модели выделите необходимый расчет, в меню "Simulation" выберите "Plot Iso Surface". Появится следующее окно.
- 2. В поле "Select Data Type" выберите расчетный параметр "Solidification Time" (время кристаллизации).
- 3. Поставьте галочку в поле "Movie" для создания анимации.
- Укажите пределы времени затвердевания отливки (по умолчанию устанавливаются по максимальному и минимальному значению).
- 5. В поле "Movie Filename" введите имя создаваемого wmv-файла.
- 6. В поле "Frames" укажите количество кадров в анимации.
- 7. В поле "Fps" введите количество кадров в секунду, отображаемых в анимации.
- 8. Нажмите кнопку ОК.

Select Data Type.	ć.	
Solidification Time		<u> </u>
Plot This Value: 0.694	Movie Ending Value: 49.091	Range: Max: 49.09065 Minutes
Movie Filename: Solidification	Frames: Fps: 36 3	Min: 0.6938695
Opacity Less	More Sur	face Detail
ок	Cancel	Help

Затвердевание отливки (анимация)

Solidification Time 0.69 - 49.09

Просмотр результатов моделирования

Определим усадочные дефекты, образующиеся в отливке:

- В дереве модели выделите необходимый расчет, в меню "Simulation" выберите "Plot Iso Surface". Появится следующее окно.
- 2. В поле "Select Data Type" выберите расчетный параметр "Material Density" (плотность материала).
- В поле "Plot This Value" укажите необходимое значение плотности (плотность материала 0,7 (или 70%) покажет нам видимые усадочные раковины; значение плотности 0,995 (или 99,5%) отобразит усадочную рыхлоту в отливке).
- 4. Так же можно установить цвет изоповерхности, коэффициент детализации и непрозрачности.
- 4. Нажмите кнопку ОК.

Усадочные раковины в отливке

Усадочные раковины в отливке

Усадочная пористость в отливке

Усадочная пористость в отливке

Вывод

- 1. При помощи программы SOLIDCast за 40 минут были рассчитаны прибыли и литниковая система.
- 2. Общее время предварительного и проверочного расчетов: 4,5 часа.